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1. Introduction

This document serves as informal reference
material for the Science History Podcast
Episode 43 on Number Theory; and was
drafted by Bryden Cais, Max von Hippel,
and Frank von Hippel.

In this podcast episode, we will discuss the history and development of Num-
ber Theory, viewed through the lens of numbers and number systems. We
will begin with the natural numbers, originally

N := {1, 2, 3, . . .}
Alternatively denoted N.which arose to abstractly represent and manipulate tallies. Over the course

of thousands of years, this system of counting numbers was studied, ex-
panded, and generalized to include zero, The Greeks mostly ignored 0 because they

used geometric lengths (e.g. of string) rather
than symbolic numbers. The Pythagoreans
thought of numbers as multitudes of 1s, and
apparently did not consider 1 itself to be a
number, let alone zero [Smi01]. There are
two kinds of 0: the number representing
nothing, as in 1− 1 = 0, and a placeholder
for multiplication, as in the decimal
1206 = ((12)×(100)) + 6. The earliest
known placeholder zero is on a Babylonian
tablet from ≈ 400BCE, that uses a base-60
number system with ′′ for a placeholder.
Ptolemy used a placeholder 0 in 130CE, but
only as punctuation. The Mayans
discovered the placeholder 0 by 665CE,
while the Indians began using it by 876CE.
By 830CE the Indians had discovered the
number 0, but they did not understand the
impossibility of division-by-0 until more
than 500 years later. Fibonacci, an Italian
mathematician, used both kinds of 0, but
called 0 a “sign” rather than a number.
Al-Khwarizmi, the namesake of “algorithm”
and “algebra”, wrote about the Hindu 0 in
Iraq in the 12th century, as did Qin Jiushao
in China in 1247. [OR00]

negative numbers, rationals, real
numbers, irrational, algebraic and transcendental numbers, complex num-
bers, modular arithmetic, and p-adic numbers. All of these systems of num-
bers play an important role in Number Theory which, at its core, is the study
of N and its properties. The goals of this episode are:

(1) Provide a mathematical and historical overview of these different
number systems and their development.

(2) Highlight the challenges and obstacles that mathematicians and civ-
ilizations faced with new concepts of number.

(3) Give the listener a sense of why these various systems of numbers
are interesting and important.

(4) Touch on some of the important unsolved problems in modern num-
ber theory, and how these different number systems play a role.

A good overview reference for some of the history is Wikipedia. Hopefully
this document and the notes in its margins are also useful.

2. The integers

Actually, there is some debate about the definition of N. Many texts
define N as above, but I would argue that the “right” definition should
include zero, as below.

N := {0, 1, 2, 3, . . .}
There are a few good arguments for this: the natural numbers are the “count-
ing” numbers, that is, they are exactly the numbers which are cardinalities
of finite sets The Russell-Zermelo paradox (discovered

around 1903) considered the “set” of all sets
that do not contain themselves. This
strange set is apparently a member of itself,
if and only if it is not a member of itself. In
the reasoning systems ZF (Zermelo
Fraenkel) and ZFC (with Choice) the
paradox disappears, because the word “set”
is not allowed to include such pathological
examples. [ID20]

(modern mathematics is predicated on axiomatic set theory,
typically using the ZF or ZFC axioms). In set theory, one of the axioms is
that the intersection of two sets should always be a set, and that necessitates
having the empty set, ∅, which contains no elements and has cardinality 0.
So if N is the set of cardinalities of finite sets, it must include zero.

Another argument has to do with arithmetic: the natural numbers are
closed under addition and multiplication, and the element 1 is a multiplica-
tive identity as it satisfies 1 · n = n · 1 = n for every natural n. From that
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point of view, it makes sense that N should also contain an additive identity,
which satisfies x+ n = n+ x = n for all naturals n. Of course, x = 0 is the
unique value that works!

This second argument will return as a central, key theme:

Philosophy 2.1. Mathematics often isolates some property that we would
like a number to satisfy, and if we don’t already have any number to satisfy
it, we make a new number and larger number system to verify the property.

Such is the genesis of the integers Alternatively denoted Z.

Z := {. . .− 3,−2,−1, 0, 1, 2, 3, . . .},
consisting of the naturals (with zero!) and their negatives. The first recorded use of negative numbers

was in The Nine Chapters on the
Mathematical Art, a textbook written by
multiple generations of Chinese
mathematicians between 100BCE and
50CE, in which negatives were denoted with
black dots, and positives with red dots. In
the 3rd century CE, Diophantus’ book
Arithmetica described certain equations as
“absurd” because they yielded negative
solutions. In the 7th century CE, the Indian
mathematician Brahmagupta extended
Diophantus’ work to treat negative numbers
as numbers in their own right. The
Europeans did not catch up to Brahmagupta
in their philosophical respect for negative
numbers for another ≈700 years. The
French mathematician Chuquet introduced
negative exponents in the 15th century CE,
calling them “absurd” exponents. Descartes,
Pascal, and Leibniz all thought negative
numbers absurd, even if propositionally
valid. Maclaurin and Euler justified negative
numbers using the metaphor of debt.
However, controversy around the apparent
absurdity of negative and imaginary
numbers persisted in European literature
through the 18th century. [Smi01]

It took civilization some time to accept negative quantities as “numbers”
in their own right, but the above philosophy plays a critical role here. Ad-
dition is fundamental to operations of the number system N, so questions
like “is there a number x for which x+ 3 = 5” arise naturally. Of course, in
this case x = 2 is the unique solution. But when we reverse the roles of 3
and 5, as in the equation x+ 5 = 3, suddenly there is no solution if we only
allow ourselves to work in the natural numbers! So a solution is created, and
called −2, and it satisfies the defining attribute that 2 + (−2) = 0.

I don’t think that negative integers exist in the same way that positive
integers do: you can show me 1 apple, you can hold it in your hand, you
can give it to me and I can take a bite out of it. But you can’t do any
of that with −1 apples, and one has to invoke notions of debt (already a
most abstract notion!) to make “real world” sense of negative numbers.
One of the central points I’d like to make is that mathematics is best—
most complete, powerful, useful, beautiful—when we don’t worry so much
about “real world” meaning or application of mathematical ideas or theories.
That is a counter-intuitive idea, as the real world has informed and spurred
so much important mathematics, but the mathematics itself develops best
untethered from these shackles of its origins.

Now the integers are a lot better than the naturals, because they form a
ring. A ring is a set of numbers in which one can do arithmetic (addition and
multiplication) and there are both additive and multiplicative identities, and
every element has an additive inverse, meaning that we can always solve the
equation x + r = 0 for any number r. One also asks that the usual axioms
(associativity, distributivity of multiplication over addition etc.) hold. The Irish mathematician William Rowan

Hamilton discovered the Quaternions on
October 16th, 1843. The Quaternions were
the first important non-commutative ring
discovered. Hamilton’s goal was to extend
the Complex numbers to a structure with
one real part and two imaginary parts, a
Theory of Triplets, to be used for
representing rotations in 3D. However, no
such Theory exists [Han77]. Instead, he one
day found and immediately etched into the
Broome Bridge a Theory of Quartets:
Quaternions [Pol06, Buc11]. This illustrates
how one cannot always just invent a number
or number system to satisfy some interesting
requirements, because sometimes (as in the
Algebra of Triplets) the requirements are
collectively unsatisfiable.

For
the purposes of this discussion, we’ll only talk about commutative rings, i.e.
rings in which

x · y = y · x
for all x and y. There are lots of important examples of non-commutative
rings, like rings of square matrices, but that is a topic for another time.

3. The rationals

Being a ring, the integers are closed under addition and multiplication, and
every integer has an additive inverse, but very few integers have multiplicative
inverses. Said differently, we can solve equations like 4x = 12 because 12 is
an integer multiple of 4, but change that 12 to a 10 and we are out of luck!
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So it is reasonable to create a new number system in which every equation
mx = n with integers m and n has a solution. Actually, this leads to a
degenerate number system, because having a solution to 0 · x = 1 causes
problems, and many of the desirable properties of a “number system” break
down. For example, if x satisfies the above equation, so does x + n for any
integer n, so either there are infinitely many x’s that solve the equation, or
we have to accept that x = x + n for all n, and either we aren’t allowed to
subtract x from both sides (ruining basic arithmetic), or in our new system
of numbers n = 0 for all n, and that is not very useful! So by definition, the
rationals are all solutions x to equations mx = n with m 6= 0. We represent
such a solution as the fraction n/m, but then we have some intricate rules to
maintain the usual features of arithmetic, since if mx = n then 2mx = 2n,
so 2n/2m = n/m.

Q :=
{ n
m

: n,m ∈ Z,m 6= 0
}

It took a long time to really understand fractions, because strictly speaking
a fraction like 3/5 is an Although hinted at since the dawn of

mathematics, equivalence classes were first
formally introduced in Jourdain’s 1912
paper On isoid relations and theories of
irrational number. Jourdain explained how
the word “equivalence” had been previously
used by Cantor to describe the cardinal
numbers, and he suggested that the same
word could be used to describe numbers
that were inherently related in other ways.
In 1926, Hasse explained how a partition of
a set yields “classes”, thus alluding to the
idea of equivalence classes, although he did
not call them such. Van der Waerden’s
Moderne Algebra explicitly discussed the
Äquivalenzrelation (equivalence relation),
but the term did not survive translation to
English. In 1935, Birkhoff illuminated the
relationship between equivalence classes and
relations, but he called the classes
“categories”. In 1942, Oystein Ore called
them “blocks”. The term “equivalence
class” became more commonplace in the
late 30s, but was not defined generally, only
in the context of a given relation (i.e. for
the relation R, one might discuss the
R-class, denoted [R] in the style of
Lefschetz). Finally, equivalence relations
were defined foundationally in Tukey’s
Convergence and Uniformity in Topology
(1940) [Asg19]. Today equivalence has
found new footing as a foundational concept
in Homotopy Type Theory, where one of the
axioms (the Univalence Axiom) says
“equivalence is equivalent to
equality” [APW13]. In that case, the
relevant kind of equivalence is homotopical.

equivalence class of pairs of integers

3

5
= {(n,m) : n,m ∈ Z, m 6= 0, 3m = 5n}

= {(3, 5), (6, 10), (9, 15), (−3,−5), (−6,−10), . . .}

This is just saying that the fractions 3
5 ,

6
10 ,

9
15 ,
−3
−5 , . . . are all the same number,

because they solve mathematically equivalent equations. But they don’t
teach equivalence classes in school when we learn about fractions, and I
think this is a difficult and subtle concept.

The set of rational numbers forms what is called a field: it is a (nonzero)
ring in which every nonzero number has a multiplicative inverse. Fields
have the pleasing property that for any elements a, b, c, the linear equation
ax+ b = c always has a solution, at least as long as a 6= 0.

The advent of the decimal system allows us to represent rationals as dec-
imals, like 3

5 = 0.6 and 1
3 = 0.3, and there is a rather nice characterization

of which decimal expansions are rational numbers:

Proposition 3.1. A decimal expansion comes from a rational number if and
only if it either terminates, or is eventually repeating.

One confounding feature of decimals is that, just like a rational number
can have many representations as a fraction (35 = 6

10 = 9
15), so too a number

can have more than representation as a decimal expansion! A classic example
is:

1.0 = 0.9.

This example is really frustrating for many people, and has resulted in more
than one shouting match and even tears. For whatever reason, many people
believe that every number has a unique decimal expansion, possibly because
we are taught from an early age to equate the concepts of number and decimal
expansion. But it just isn’t true, much in the same way that rational numbers
don’t have a unique representation as a fraction. In grade-school, one of my
math teachers insisted that 1 and 0.9 are different numbers, and no amount
of reasoning would convince them otherwise. But if you admit that decimal
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expansions represent numbers, and therefore must obey the basic laws of
arithmetic (these are axiomatized!), then This argument is intuitively convincing, but

formal arguments are more complicated.
The classic argument taught to mathematics
students uses the (ε, δ)-definition of a limit,
and can be unsatisfying because, at the
introductory stage of a real-analysis course,
it is not yet obvious to the students that
such limits actually define equality. Another
approach is a proof based on infinite series.
We know that for all r, if |r| < 1, then:
∞∑
i=1

ari =
ar

1− r
Plugging in r = 1

10
and a = 9 gives

0.9 =

∞∑
i=1

9(
1

10
)i

=
9( 1

10
)

1− 1
10

=
9/10

9/10

= 1
This proof appears in Euler’s 1770 Elements
of Algebra [Eul70].

1 = 0.9 is forced upon you, since:

1

3
= 0.3

by long division, so multiplying both sides by 3 yields 1 = 0.9. Said another
way, whatever number x = 0.9 is, it has to obey the rules of arithmetic, so
has to satisfy 10x − x = 9 since multiplication by 10 shifts the decimal to
the right by 1, and subtracting x from this lops off the infinite repeating tail
of 9′s. But then 9x = 9, which again forces x = 1.

4. Real numbers

With Proposition 3.1 in mind, it is natural to ask what numbers are
represented by arbitrary decimal expansions. These are of course the real
numbers: R, and they solve a basic problem with the rationals, which is
that the rational numbers have holes. That is, there are infinite sequences of
rational numbers which are getting arbitrarily close to something, but that
something isn’t a rational number! For example:

3, 3.1, 3.14, 3.141, 3.1415, · · ·
This just reflects the fact that if you truncate an arbitrary decimal expansion
at any point, you will get a terminating decimal expansion, which must
therefore be a rational number. From this point of view, the rational numbers
are not complete with respect to the usual measure of distance given by
absolute value: This distance function is a metric. The

French mathematician Maurice Fréchet
initiated the study of metrics and metric
spaces (spaces topologized by metrics) in
1905 [The20]. Today metric spaces are
fundamental to operations research, machine
learning, algorithm design, and numerous
other disciplines.

d(x, y) := |x− y|.
The reason is that there are lots of sequences of rationals as above, with
the property that the distance between any two terms in the sequence gets
smaller and smaller as you go out, but there is no “final term”, or limit,
of the sequence within the system of rational numbers. In this way, the
real numbers are the completion of the rationals with respect to the usual
distance function above: they “fill in” all of the holes that the usual distance
function perceives in the form of sequences whose terms get increasingly
close together. Such sequences are called Cauchy sequences, after the French
mathematician Augustin–Louis Cauchy (1789–1857), who was a pioneer of
mathematical rigor in algebra and analysis, and introduced the much-loathed
(by students) notion of (ε, δ) arguments to Calculus.

The system of real numbers has many wonderful properties, including
continuity, and therefore provides the right setting in which to do calcu-
lus. But they have some rather bizarre and frustrating features: there are
continuous functions that are differentiable nowhere, nonzero smooth func-
tions which vanish identically on any closed subset, nonnegative integrable
functions with zero integral, and so forth.

5. p-Adic numbers

As explained above, the real numbers are created by “filling in the holes”
of the rational numbers that are detected by the usual distance function
d(x, y) = |x − y|. But this is not the only distance function on the rational
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numbers, and different distance functions will pick up on different “holes”,
which p-Adic numbers were first explicitly

discovered by the German mathematician
Kurt Wilhelm Sebastian Hensel in
1897 [Hen97]. However, the translator’s
introduction to Dedekind and Weber’s
Theory of algebraic functions of one variable
notes: “Indeed, with hindsight it becomes
apparent that a discrete valuation is behind
Kummer’s concept of ideal
numbers.” [DW12] The implication is that
Kummer—in this case, the German
mathematician Ernst Eduard
Kummer—may have implicitly used p-adic
numbers before Hensel did. This does not
exactly mean that Kummer came up with
the p-adic numbers first; he might not have
known his work had such deeper
significance. The mathematician
Christopher Zeeman once debated the
historian David Fowler for 40 years about
weather or not Euclid viewed ratios as
something like an equivalence class [Asg19].
The question is similar to asking if Kummer
really knew that he was doing p-adic
number theory. Zeeman wrote, in
correspondence to Fowler, “The historian
thinks extrinsically in terms of the written
evidence and adheres strictly to that data,
whereas the mathematician thinks
intrinsically in terms of the mathematics
itself, which he freely rewrites in his own
notation in order to better understand it
and to speculate on what might have been
passing through the mind of the ancient
mathematician, without bothering to check
the rest of the data.” [Zee08]

are filled in by entirely new systems of numbers! To motivate this,
which will seem very strange at first given our rich experience of the real
numbers, consider the rational number 0. This is arguably the smallest ra-
tional number by any sense of small since adding it to any other rational
number does nothing. But there is another multiplicative measure of small-
ness that zero satisfies: it is the only integer that is arbitrarily divisible, in
the sense that 0 is a multiple of n for every integer n. Thinking in terms
of decimals, 0 is the only integer which, when represented in base 10, has
arbitrarily many zeros to the left of the decimal point. Said in terms of
arithmetic, 0 is the only integer which is divisible by 10k for every natural
number k. This inspires a new prototype of distance:

Definition 5.1. The 10-adic absolute value of an integer n is 1/10k, where
10k is the highest power of 10 dividing n.

By definition, the 10-adic absolute value of 0 is 0. This notion of size is
really different from the usual one, since 1000 is smaller than 100, which is
smaller than 10, and 311 and 7 have the same size! But actually, 10 is a bad
choice, because we don’t really get a well-behaved distance function from it.
Indeed, the 10-adic absolute values of 2 and 5 are both 1, but their product
has 10-adic absolute value 0.1, so this new absolute value isn’t multiplicative.
That causes all kinds of problems, and it doesn’t really deserve to be called
an absolute value. But this problem is caused by the fact that 10 can be
factored as 2·5, so the problem goes away if we replace 10 by a prime number
p. In this way, we get for every prime p, a p-adic absolute value on Z, which
can be extended to Q by declaring that the absolute value of a ratio is the
ratio of the absolute values of numerator and denominator:

|n|p := 1/pk where pk is the highest power of p dividing n∣∣∣m
n

∣∣∣
p

:=
|m|p
|n|p

For example, using the 3-adic absolute value, the sequence 3, 9, 27, 81, 243, . . .
is approaching 0, while the sequence 2, 4, 8, 16, 32, · · · is a sequence of num-
bers all of the same 3-adic absolute value 1. So for each prime p, we get
a new distance function on the rational numbers: dp(x, y) = |x − y|p, and
these new distance functions “see” new holes in the rational numbers, which
can be filled in (like we made the real numbers) to produce the p-adic num-
bers Qp, which is a completely new number system for each prime p. Said
differently, Qp is the completion of Q with respect to the p-adic absolute
value. We now have infinitely many different ways of filling in the holes in
the rationals:

R,Q2,Q3,Q5,Q7,Q11, . . .

and an amazing theorem of Alexander Ostrowski (1893–1986) asserts that
these are the only completions of Q; i.e. that there are no other ways to fill
in the holes.

The number systems Qp are really different from R, largely because the
p-adic distance function is ultrametric in the following sense. The usual ab-
solute value, which completes the rationals to the reals, satisfies the triangle
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inequality: the length of the hypotenuse of a triangle is at most the sum of
the lengths of the other two sides. But the p-adic absolute value satisfies the
strong triangle inequality, in which the hypotenuse of a triangle has length at
most the maximum of the other two sides! No sum needed! This leads to the
remarkable fact that the collection of all p-adic numbers of p-adic absolute
value at most 1 forms a ring, so is a number system in its own right:

Zp := {x ∈ Qp : |x|p ≤ 1}
In fact, the p-adic absolute value sees “holes” already in Z, and Zp is what
you get when you fill in these holes. For example, the sequence

1, 4, 13, 175, 4549, 11110 . . .

converges to a limit L in Z3 because the successive differences are 3, 32, 2 ·
34, 2 · 37, 38 . . ., which have 3-adic absolute values tending to zero. Actually,
the 3-adic limit of this sequence L satisfies L2 = 7, so that

√
7 exists in Z3;

this can be seen by looking at a2 − 7 for each a in the sequence above, and
we get the integers

−2 · 3, 32, 2 · 34, 2 · 7 · 37, 2 · 19 · 83 · 38, . . .
which are progressively more and more divisible by 3, so 3-adically are tend-
ing to zero.

6. What are the p-Adic numbers good for?

Arithmetic—addition and multiplication—lead (as we have seen) to alge-
braic equations like nx = m and ax+ b = c, and eventually to more complex
equations like

x2 + y2 = z2

Broadly construed, (algebraic) number theory is the study of (systems of)
algebraic equations and their solutions. Solving equations like the above
with x, y, z real numbers is easy! We can pick more or less any values for
x and y that we like, and then just solve for z. This leads to lots of real
solutions, like

(x, y, z) = (1, 1,
√

2), (1, 2,
√

5), (2, 3,
√

13), · · ·
but it is really hard (or even impossible with many systems) to find any
nontrivial1 rational or integer solutions. Of course, the system above is a re-
ally famous one, whose integer solutions are exactly the Pythagorean triples,
like (3, 4, 5) and (5, 12, 13). It is important to emphasize that computers are
not very helpful in finding such integer solutions: because there are infinitely
many integers, we can’t have a computer just plug in numbers and hope that
it will eventually stumble upon an integer solution, since such a procedure
might never finish, and even if there are integer solutions to be found, they
are very rare compared to the real solutions, so there isn’t much chance to
find them by happenstance.

It turns out that for any system of algebraic equations like the one above,
finding solutions in Qp for each prime p, or determining that none exist, is

1The solutions (x, y, z) = (±1, 0,±1), (0,±1,±1) are called trivial becuase they are
rather obvious, and not as interesting as solutions where x, y, and z are all nonzero.
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about as easy as finding solutions in real numbers. Roughly speaking, this is
because Qp—like the real numbers—is complete with respect to an absolute
value, so doesn’t have any “holes”, and we can more or less plug in randomly
and then solve for the missing values. This doesn’t always work, just as it
doesn’t always work in the reals (for example, x2 + y2 + z2 = −1 has no
real solutions at all). But finding p-adic solutions to systems of equations,
or determining that none exist, is a tractable problem, just as it is in the
reals (for example, one has a p-adic Newton’s method for producing solutions
from approximations by an iterative procedure).

This same problem for integer solutions is called Hilbert’s tenth problem,
and was formulated by the influential German mathematician David Hilbert
in his now eponymous list of problems, presented to the International Con-
gress of Mathematicians in 1900. In 1970, building on prior work of many
mathematicians, Matiyasevich finally proved in 1970 that Hilbert’s tenth
problem is unsolvable, meaning that there can be no algorithm to decide if a
general system of algebraic equations has an integer solution or not. Amaz-
ingly, Matiyasevich’s proof uses Fibonacci numbers in an essential way!

Nonetheless, an amazing result of Hasse and Minkowski does provide an
algorithm for equations of small degree:

Theorem 6.1. If an equation in finitely many variables with rational co-
efficients involves only the pairwise products of the variables, then it has a
rational solution if and only if it has a solution in R and in every Qp.

So, for example, the Pythagorean equation above has terms only of degree
2, so the fact that it has solutions in R and in every Qp implies that it has
rational (end even integer) solutions.

This idea—that we can solve algebraic equations in rational numbers if we
can do so in every completion of the rationals—is called the Hasse principle,
and is a central philosophy in number theory. Unfortunately, it doesn’t
always hold! For example, Selmer found the equation

3x3 + 4y3 + 5z3 = 0

has nontrivial solutions in R and in every Qp, but no nontrivial rational
solutions at all!
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